Electrical activity of artificial ion channels incorporated into planar lipid bilayers

N ormand Voyer, ${ }^{*, a}$ Léna Potvin ${ }^{\text {b }}$ and É ric R ousseau ${ }^{\text {b }}$
${ }^{\text {a }}$ D épartement de chimie and ${ }^{\text {b }}$ D épartement de biophysique et physiologie, U niversité de Sherbrooke, Sherbrooke, Québec, C anada J 1K 2R 1

The ion transport ability in a planar lipid bilayer of a 21 amino acid peptide bearing six 21-crown-7 side chains is reported. The compound was designed to form an artificial ion channel by stacking the crown rings, when adopting an α-helical conformation in a bilayer membrane. All the derivatives of 1 exhibited membrane conductivity with the best results obtained with the unprotected analog 4 . The latter showed typical single channel activity.

Introduction

Ion channel proteins are complex membrane proteins that control and regulate the flow of ions across cell membranes. Because of their involvement in several diseases and their potential uses in biosensors, these proteins have attracted considerable attention in the past decade. U nfortunately, there are several problems associated with natural ion channel proteins that severely limit their utility as both therapeutic agents and components of biosensors. Firstly, these transmembrane proteins are difficult to isolate in their pure functional form and they tend to denature easily. Secondly, they are very sensitive to degradation, and thirdly, their chemical modification into more elaborated molecular systems is almost impossible owing to their complex structure
To overcome these difficulties, we sought to develop relatively small molecular systems that could mimic the transport properties of ion channel proteins. Several approaches towards artificial ion channels have been reported in the literature. ${ }^{1} \mathrm{M}$ ost of the molecular systems described have not been thoroughly characterized and have not been shown to be the functional channel in planar lipid bilayer membranes (PLB). Recently, sophisticated molecules were reported to be functional and their active structure has been probed in detail. ${ }^{2} \mathrm{H}$ owever, none of these approaches allows easy post-synthesis chemical modification into more useful molecular devices.

Recently, we have described a general strategy to prepare supramolecular devices bearing multiple effectors with a defined and predictable structure. ${ }^{3}$ The strategy was used to prepare an artificial ion channel shown to befunctional using a vesicle assay. ${ }^{4} \mathrm{H}$ erein we describe our results of a study of the transport ability of one such device, a 21 amino acid peptide 1 designed to form an artificial ion channel by aligning six 21 -crown- 7 side chains as illustrated schematically in Fig. 1.

The specific objective of our research program is to develop artificial channels that might operate on their own and not through aggregation, in order to more easily assess their detailed mechanism and functional structure. A lso we focus on molecular systems that might be elaborated further into more sophisticated devices.

Results and discussion

Different behaviors were observed with the analogs of $\mathbf{1}$. The fully protected and neutral 1 incorporated the bilayer membrane with difficulty when added directly to the buffer solution from the DM SO stock solution. U pon incorporation, irregular transmembrane currents were detected demonstrating that 1 was able to transport ions quite efficiently under large electrical

Fig. 1 (a) A xial projection of the α-helical structure of the hexacrown peptides 1-4 with the positions of the crown residue indicated by the circles and (b) the working hypothesis: the helical conformation of 1-4 produces an array of crown ethers that might form an artificial ion channel. The N - and C-terminal groups are not shown for clarity. (Reproduced with permission from ref. 4.)
N-Fmoc-Ala-CE-Ala $-\mathrm{CE}_{3}-\mathrm{Ala}_{2}$-CE-Ala ${ }_{3}$-CE-Ala ${ }_{2}$-CE-Ala 3_{3}-CE-Ala-O-Bu ${ }^{t} \mathbf{1}$ $\mathrm{H}_{2} \mathrm{~N}$-Ala-CE-Ala 3_{3}-CE-Ala 2 -CE-Ala 3_{3}-CE-Ala 2 -CE-Ala 3_{3}-CE-Ala-O-Bu ${ }^{t} 2$ N-Fmoc-Ala-CE-Ala 3_{3}-CE-Ala 2_{2}-CE-Ala 3_{3}-CE-Ala 2_{2}-CE-Ala ${ }_{3}$-CE-Ala-OH 3 $\mathrm{H}_{2} \mathrm{~N}$-Ala-CE-Ala 3_{3}-CE-Ala 2_{2}-CE-Ala ${ }_{3}$-CE-Ala 2_{2}-CE-Ala ${ }_{3}$-CE-Ala-OH 4 Ala $=$ L-alanine $\quad N$-Fmoc $=$ Fluorenylmethoxycarbonyl -

gradients. The same irregular activity was obtained immediately when the bilayer was formed in the presence of $\mathbf{1}$. In both cases the transport activity was detected at high applied voltages (<-60 and $>+60 \mathrm{mV}$), which suggests that the fully protected peptide 1 adsorbs on the PLB and incorporates transiently when the bilayer is subjected to large voltage changes. Control experiments showed that the membrane conductance of the bare bilayer was stable with $10^{-3} \mathrm{~m}$ D M SO alone. On the other hand, addition of 1 mm guanidinium chloride to the solution led to a noticeable lowering of the membrane conductivity. G uanidinium ions are known to be bound tightly by ligands of the 21-crown-7 type. An interesting feature of crown peptide 1 is the fact that once it is incorporated, it stays in the bilayer until the latter is broken. On the other hand, in a complementary experiment with a Na^{+}piperazine-1,4-bis(ethanesulfonate) (Na -PIPES) solution instead of a NaCl solution, peptide 1 generated ionic currents demonstrating that Na^{+}is the charge carried and not Cl^{-}.

Fig. 2 Typical membrane conductivity observed with peptides (a) $\mathbf{2}$ and (b) 3 when using symmetrical NaCl solutions (100 mm on both sides of the bilayer) and applying $\pm 40 \mathrm{mV}$ potentials. Ion transport results in rapid increases of membrane conductivity.
(a)

$+20 \mathrm{mV}$

(b)

0 mV
(c)

 $-20 \mathrm{mV}$

Fig. 3 Typical membrane conductivity observed with the unprotected peptide $\mathbf{4}$ at positive (a) and at negative (c) potentials using symmetrical NaCl solutions (100 mm on both sides of the bilayer). The conductivity behavior of 4 is typical of natural ion channels with preferred current levels (1-2 pA). N ote the absence of unitary current at 0 mV (b).

The difficulty in the incorporation of the fully protected peptide 1 led us to believe that analogs with polar and charged terminal groups would penetrate the membrane more easily upon applying a transmembrane potential. In addition, we anticipated that these entities would be morestable than 1 in the bilayer environment. We therefore prepared the partially and the fully deprotected analogs of 1, compounds 2,3 and 4.

As predicted, the deprotected peptides proved to be more active than 1, with the best results obtained with the fully deprotected peptide 4. The amino peptide ester 2 and the N F moc-peptide $\mathbf{3}$ had almost the same activity but were more active than 1. They showed a more regular membrane conductivity at lower potentials, in the range of -40 to +40 mV (Fig. 2). The addition of guanidinium ions partially blocked the membrane current of $\mathbf{2}$ and $\mathbf{3}$, but the activity reverted to the same levels in time (after around 30 min). This result suggests that the Na^{+}ions travel through the channel formed by the alignment of the crown units.

A s mentioned, the best results were obtained with the fully deprotected analog 4. Indeed, typical single channel measurements were observed with preferential current levels at $\pm 20 \mathrm{mV}$ (Fig. 3). Typical amplitudes were in the range of 1 to 2 pA with variable open channel lifetimes. In these preliminary experiments, the gating behavior of the unitary events was not
(a)

(b) +1 mM CsCl
$2 \mathrm{pA}{\underset{2 \mathrm{~s}}{ }}$

Fig. 4 (a) M embrane currents at various holding potentials after incorporation of 4 using different (asymmetrical) NaCl solutions on each side of the bilayer (100 mm trans, 300 mm cis). The current observed in the absence of potentials (0 mV) is due to the N a+ transport driven by the ionic gradient; (b) as (a) but in the presence of 1 mm CsCl in the cis chamber to show the partial inhibition of Na^{+}transport by the Cs^{+}ions.
assessed. These results confirmed that after incorporation a molecular hydrophobic entity with the two polar (charged) head groups is anchored more strongly in a bilayer membrane.

In order to ascertain that monovalent cations were able to permeate the synthetic channel 4 under their chemical gradient, some experiments were performed using asymmetrical NaCl buffers (cis = 300 mm , trans = $100 \mathrm{~mm} ;$ Fig. 4). It is noteworthy that at 0 mV , i.e. in the absence of an electrical gradient, positive unitary currents were detected [Fig. 4(a), third trace]. The current amplitude and the occurrence of the events appear to be voltage sensitive in this case. F urthermore, the addition of 1 $\mathrm{mm} \mathrm{Cs}{ }^{+}$in the cis chamber partially blocks the electrical activity recorded at +20 mV , suggesting that Cs^{+}ions were able to compete with Na^{+}ions for the ionic pathway.

C onclusions

Overall, the results reported demonstrate that the hexacrown ether peptide 1 and its analogs incorporate into planar lipid bilayers. Their incorporation induces transmembrane currents of various amplitudes depending on the driving forces applied across the artificial membrane. In the case of the fully deprotected peptide 4, typical single channel currents were observed. These results demonstrate that compounds 1-4 are functional artificial ion channels, although not as efficient so far as the natural ion channel proteins in terms of conductivity. The addition of Cs^{+}and guanidinium ions resulted in a partial block age of the ionic currents, which suggests that Na a ions travel in the 'channel' formed by the alignment of the crown ether rings and that 1-4 operate in a monomeric form. However, with these preliminary results, it is not possible to completely rule out that channels could be formed alternatively by the aggregation of
multiple helical peptides as in the cases of antibiotic ${ }^{5}$ and amphiphilic ${ }^{2 a}$ peptides. Work is currently underway to characterize further the ion channel activity of 4 and to synthesize analogs with different amino acids and head groups.

Experimental

Synthesis

The hexacrown ether peptide $\mathbf{1}$ was prepared according to our previously reported procedure. ${ }^{1}$ The deprotected analogs of 1 were prepared by the following procedures.
$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{Ala}-\mathrm{CE}-\mathrm{Ala}_{3}-\mathrm{CE}-\mathrm{Ala}\right)_{3} \mathbf{O}-\mathrm{Bu}^{\mathrm{t}}$ 2. The fully protected peptide 1 (15 mg) was treated for 4 h with a 30% diethylamine solution in DMF. After evaporation of the solvent under vacuum, the crude product was triturated five times with diethyl ether. The remaining white solid was dried under vacuum, then dissolved in glacial acetic acid and lyophilized to yield peptide 2 as a white solid ($13 \mathrm{mg}, 95 \%$). The product was characterized by reversed-phase HPLC and ${ }^{1} \mathrm{H}$ NMR spectroscopy, which showed the absence of fluorenyl signals.
$\mathrm{N}-\mathrm{F} \operatorname{moc}\left(\mathrm{Ala}-\mathrm{CE}-\mathrm{Ala}_{3}-\mathrm{CE}-\mathrm{Ala}\right)_{3} \mathrm{OH}$ 3. Peptide $\mathbf{1}(15 \mathrm{mg})$ was dissolved in a $10 \% \mathrm{p}$-cresol solution in neat trifluoroacetic acid and the resulting mixture was stirred at room temperature for 2 h . A fter evaporation, the oily residue was triturated five times with diethyl ether to yield a white hygroscopic solid. The latter was dissolved in glacial acetic acid and lyophilized to give 3 (13 $\mathrm{mg}, 90 \%$) which was characterized by reversed-phase HPLC and ${ }^{1} \mathrm{H}$ NMR spectroscopy, which demonstrated the absence of the tert-butyl group.
$\mathrm{H}_{2} \mathrm{~N}\left(\text { Ala-CE-Ala }{ }_{3} \text { - } \mathrm{CE}-\mathrm{Ala}\right)_{3} \mathrm{OH}$ 4. The fully unprotected peptide $\mathbf{4}$ was prepared by treating peptide $2(10 \mathrm{mg})$ with a 10% p -cresol solution in trifluoroacetic acid for 2 h at room temperature. After evaporation of the solvent, trituration with diethyl ether afforded the crude peptide which was dissolved in acetic acid and lyophilized to give the desired peptide 4 (9 mg , $97 \%)$. The compound was characterized by the same technique as for 2 and 3.

B ilayer formation and hexacrown ether peptide incorporation

The planar lipid bilayers (PLBs) were formed at room temperature from a lipid mixture containing phosphatidylethanolamineand diphytanoylphosphatidylcholine (Avanti Polar lipids, A labama, USA) in a 50:50 ratio. The final lipid concentration was $25 \mathrm{mg} \mathrm{ml}^{-1}$ dissolved in decane. A $250 \mu \mathrm{~m}$ diameter hole, drilled in a poly(vinylidene) fluoride (PVF) cup, was pretreated with the same lipid mixture dissolved in chloroform. U sing a Teflon stick, a drop of decane lipid mixture was gently spread across the hole to obtain an artificial membrane. M embrane thinning was assayed by applying a triangular wave test pulse and typical capacitance values were $150-250 \mathrm{pF}$. The experimental chambers (3 ml cis and 4.5 ml trans) contained 100 mm $\mathrm{NaCl}, 500 \mu \mathrm{M} \mathrm{CaCl} 2$ and 5 mm Na -PIPES [$\mathrm{Na} \mathrm{a}^{+}$piperazine $-1,4-$ bis(ethanesulfonate)], $\mathrm{pH}=7.0$. A liquots of compounds 1-4 (3μ l of a 3 mm stock solution in D M SO) were added to the cis chamber in the proximity of the bilayer. Incorporations were either spontaneous or achieved by applying negative holding potentials across the lipid bilayer. They were monitored as
discrete current fluctuations owing to the presence of synthetic 'channels' in the bilayer. Alternatively, 100 mm LiCl or Na PIPES buffer solution was used instead of 100 mm NaCl .

Recording instrumentation

The currents were recorded using a low noise operational amplifier DAGA N 8900. The currents were then filtered (cut off frequency 10 kHz) and recorded on a video cassette recorder through a modified pulse code modulation device (DAS/VCR 900, UNITRADE). The currents were simultaneously displayed on-line on a chart recorder (DA SH II M T, A stro M ed.) and on an oscilloscope(K ikusui, 5040). Current recordings were played back, filtered at 500 Hz and sampled at 2 kHz for storage on hard disk and further analysis using a H P-Vectra computer. Theopen probability values (P_{o}) were determined from the data stored in 40 s duration files. Applied voltages are defined with respect to the trans chamber, which was held at virtual ground. The cis chamber was defined as the side where the synthetic molecules were added.

Acknowledgements

This work was supported by the NSERC of Canada, the FCAR of Québec, and the U niversité de Sherbrooke. E. R . is a FRSQ Scholar.

R eferences

1 (a) O. M urillo and G. W. G okel, Acc. Chem. Res., 1996, 29, 425 and references cited therein; (b) G. G. Cross, T. M. Fyles, T. D. James and M. Zojaji, Synlett, 1993, 449 and references cited therein; (c) L. Julien, T. Lazrak, J. Canceill, L. Lacombe and J.-M. Lehn, J. Chem. Soc., Perkin Trans. 2, 1993, 1011; (d) U. F. K ragton, M. F. Roks and R. J. M . N olte, J. Chem. Soc., Chem. Commun., 1985, 1275; (e) F. M. M enger, D. S. D avis, R. A. Persichetti and J. J. Lee, J. Am. Chem. Soc., 1990, 112, 2451; (f) I. Tabushi, Y. K uroda and Y. Yokota, Tetrahedron Lett., 1982, 23, 4601; (g) E. Stadler, P. D edeck, K. Yamashita and S. L. Regen, J. A m. Chem. Soc., 1994, 116, 6677; (h) O. M urillo, S. Watanabe, A. N akano and G. W. G okel, J. A m. Chem. Soc., 1995, 117, 7665.

2 (a) K. S. Å kerfeldt, J. D. Lear, Z. R. Wasserman, L. Chung and W. F. DeG rado, Acc. Chem. Res., 1993, 26, 191 and references cited therein; (b) M . M ontal, M. S. M ontal and J. M. Tomich, Proc. N at. A cad. Sci. U SA, 1990, 87, 6929; (c) M . R. G hadhiri, J. R. G ranja and L . K . Buehler, N ature, 1994, 369, 301; (d) Y. K obuke, K . U eda and M. Sokabe, J. Am. Chem. Soc., 1992, 114, 7618; (e) Y. K obuke, K. U eda and M. Sokabe, Chem. Lett., 1995, 435; (f) Y. Tanaka, Y. K obuke and M. Sokabe, A ngew. Chem., Int. Ed. Engl., 1995, 34, 693; (g) K. Ichikawa, M. A. H ossain, T. Tamura and N. K amo, Supramol. Chem., 1995, 5, 219; (h) M. Engels, D. Bashford and M . R . G hadiri, J. A m. C hem. Soc., 1995, 117, 9151.
3 (a) N. Voyer, J. A m. Chem. Soc., 1991, 117, 1818; (b) N. Voyer and J. L amothe, Tetrahedron, 1995, 51, 9241.

4 N. Voyer and M. Robitaille, J. Am. Chem. Soc., 1995, 117, 6599.
5 U. P. Fringeli and M. Fringeli, P roc. N atl. A cad. Sci. USA, 1979, 76, 3852; see also reference 2(a).

Paper 7/01060E
Received 7th February 1997
A ccepted 10th A pril 1997

